>> 当前位置:首页 - 产品 - 其他未分类 - 全部分类 ▼
自动化是智慧运维价值闭环的“然后一公里”。当平台通过分析诊断出问题根因并形成解决方案后,需要有能力自动执行修复动作。这可以通过预置的自动化剧本(Playbook)或与RPA、Ansible、KubernetesOperator等自
自动化运维是智慧运维平台提升效率的关键手段,平台内置可视化脚本编辑器与丰富的预制模板,支持Shell、Python等多种脚本语言,运维人员可通过拖拽方式快速构建部署、巡检、故障恢复等自动化流程。通过与监控系统联动,平台能够实现故障
企业引入智慧运维平台不应一蹴而就,应遵循循序渐进的成熟度模型。通常可分为四个阶段:第一阶段是“统一监控”,整合工具与数据,实现可观测性;第二阶段是“场景智能化”,在告警压缩、异常检测、根因分析等关键场景引入AI,提升效率;第三阶段
企业引入智慧运维平台不应一蹴而就,应遵循循序渐进的成熟度模型。通常可分为四个阶段:第一阶段是“统一监控”,整合工具与数据,实现可观测性;第二阶段是“场景智能化”,在告警压缩、异常检测、根因分析等关键场景引入AI,提升效率;第三阶段
为了应对业务的快速变化,智慧运维平台需要具备足够的灵活性,允许运维人员快速定制监控视图、分析场景和自动化流程,而无需等待开发团队的支持。低代码/无代码(LCNC)能力在此背景下显得至关重要。通过图形化拖拽、表单配置和规则引擎,业务
Web端中屏模块作为智慧生产运行中心的中枢控制和管理平台,面向管理人员,提供精细的数据显示和数据分析功能。通过实时采集各类水务设备与设施(如水源地、水厂、供水管网、污水处理设施等)的运行数据,进行深度整合与挖掘分析,形成可视化报表
智慧运维平台引入知识图谱技术,将运维手册、故障处理案例、专业人士经验等非结构化数据转化为结构化知识网络。通过实体识别与关系抽取,构建设备、故障、解决方案之间的关联模型,当系统检测到新的故障特征时,能够自动匹配相似历史案例并推送比较
智慧运维平台的数据流转的闭环设计确保了管理决策的科学性。数字大屏发现的“管网末梢压力偏低”问题,通过中屏模块的数据分析,定位为某加压泵站的水泵效率下降;中屏系统生成的“水泵检修”任务,通过移动端派发至维修班组;维修完成后,移动端上
智慧运维平台的数据流转的闭环设计确保了管理决策的科学性。数字大屏发现的“管网末梢压力偏低”问题,通过中屏模块的数据分析,定位为某加压泵站的水泵效率下降;中屏系统生成的“水泵检修”任务,通过移动端派发至维修班组;维修完成后,移动端上
大语言模型(如GPT系列)的出现,为智慧运维带来了颠覆性的交互方式。通过将自然语言与运维平台对接,运维人员可以直接用口语提问,如“昨天晚上系统为什么变慢?”、“较近有哪些异常登录?”,平台能自动理解意图,查询相关数据并生成结构化的
业务连续性规划(BCP)严重依赖于对系统依赖关系和风险点的准确认知。智慧运维平台中动态生成的应用拓扑图、梳理出的关键业务链路、以及历史故障影响范围分析,为制定准确的BCP提供了较真实的数据基础。平台可以模拟不同灾难场景(如单个AZ
智慧运维平台的价值需要被有效地传递给内部客户(如业务部门)和外部客户。平台可以生成面向不同角色的价值报告:为管理层提供系统整体健康度、资源利用率、成本节省等战略视图;为业务部门提供其关键应用的性能SLA达成情况、用户体验分析等运营